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Functional Bregman Divergence and Bayesian
Estimation of Distributions

B. A. Frigyik, S. Srivastava, and M. R. Gupta

Abstract— A class of distortions termed functional Bregman
divergences is defined, which includes squared error and relative
entropy. A functional Bregman divergence acts on functions or
distributions, and generalizes the standard Bregman divergence
for vectors and a previous pointwise Bregman divergence that
was defined for functions. A recently published result showed
that the mean minimizes the expected Bregman divergence. The
new functional definition enables the extension of this result
to the continuous case to show that the mean minimizes the
expected functional Bregman divergence over a set of functions
or distributions. It is shown how this theorem applies to the
Bayesian estimation of distributions. Estimation of the uniform
distribution from independent and identically drawn samples is
used as a case study.

Index Terms— Bregman divergence, Bayesian estimation, uni-
form distribution, learning

BREGMAN divergences are a useful set of distortion func-
tions that include squared error, relative entropy, logistic

loss, Mahalanobis distance, and the Itakura-Saito function.
Bregman divergences are popular in statistical estimation and
information theory. Analysis using the concept of Bregman di-
vergences has played a key role in recent advances in statistical
learning [1]–[10], clustering [11], [12], inverse problems [13],
maximum entropy estimation [14], and the applicability of the
data processing theorem [15]. Recently, it was discovered that
the mean is the minimizer of the expected Bregman divergence
for a set of d-dimensional points [11], [16].

In this paper we define a functional Bregman divergence that
applies to functions and distributions, and we show that this
new definition is equivalent to Bregman divergence applied
to vectors. The functional definition generalizes a pointwise
Bregman divergence that has been previously defined for
measurable functions [7], [17], and thus extends the class of
distortion functions that are Bregman divergences; see Section
I-A.2 for an example. Most importantly, the functional defi-
nition enables one to solve functional minimization problems
using standard methods from the calculus of variations; we
extend the recent result on the expectation of vector Breg-
man divergence [11], [16] to show that the mean minimizes
the expected Bregman divergence for a set of functions or
distributions. We show how this theorem links to Bayesian
estimation of distributions. For distributions from the expo-
nential family distributions, many popular divergences, such
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as relative entropy, can be expressed as a (different) Bregman
divergence on the exponential distribution parameters. The
functional Bregman definition enables stronger results and a
more general application.

In Section 1 we state a functional definition of the Bregman
divergence and give examples for total squared difference,
relative entropy, and squared bias. In later subsections, the
relationship between the functional definition and previous
Bregman definitions is established, and properties are noted.
Then in Section 2 we present the main theorem: that the
expectation of a set of functions minimizes the expected Breg-
man divergence. We discuss the application of this theorem to
Bayesian estimation, and as a case study compare different
estimates for the uniform distribution given independent and
identically drawn samples. Proofs are in the appendix. Readers
who are not familiar with functional derivatives may find
helpful our short introduction to functional derivatives [18]
or the text by Gelfand and Fomin [19].

I. FUNCTIONAL BREGMAN DIVERGENCE

Let
(
Rd, Ω, ν

)
be a measure space, where ν is a Borel

measure and d is a positive integer. Let φ be a real functional
over the normed space Lp(ν) for 1 ≤ p ≤ ∞. Recall that the
bounded linear functional δφ[f ; ·] is the Fréchet derivative of
φ at f ∈ Lp(ν) if

φ[f + a]− φ[f ] = 4φ[f ; a]
= δφ[f ; a] + ε[f, a] ‖a‖Lp(ν) (1)

for all a ∈ Lp(ν), with ε[f, a] → 0 as ‖a‖Lp(ν) → 0 [19].
Then given an appropriate functional φ, a functional Bregman
divergence can be defined:

Definition I.1 (Functional Definition of Bregman Divergence).
Let φ : Lp(ν) → R be a strictly convex, twice-continuously
Fréchet-differentiable functional. The Bregman divergence dφ :
Lp(ν) × Lp(ν) → [0,∞) is defined for all admissible f, g ∈
Lp(ν) as

dφ[f, g] = φ[f ]− φ[g]− δφ[g; f − g], (2)

where δφ[g; ·] is the Fréchet derivative of φ at g.

Here, we have used the Fréchet derivative, but the definition
(and results in this paper) can be easily extended using other
definitions of functional derivatives; a sample extension is
given in Section I-A.3.
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2 FUNCTIONAL BREGMAN DIVERGENCE

A. Examples

Different choices of the functional φ lead to different
Bregman divergences. Illustrative examples are given for
squared error, squared bias, and relative entropy. Functionals
for other Bregman divergences can be derived based on these
examples, from the example functions for the discrete case
given in Table 1 of [16], and from the fact that φ is a strictly
convex functional if it has the form φ(g) =

∫
φ̃(g(t))dt

where φ̃ : R → R, φ̃ is strictly convex and g is in some
well-defined vector space of functions [20].

1) Total Squared Difference: Let φ[g] =
∫

g2dν, where
φ : L2(ν) → R, and let g, f, a ∈ L2(ν). Then

φ[g + a]− φ[g] =
∫

(g + a)2dν −
∫

g2dν

= 2
∫

gadν +
∫

a2dν.

Because
∫

a2dν

‖a‖L2(ν)
=
‖a‖2L2(ν)

‖a‖L2(ν)
= ‖a‖L2(ν) → 0

as a → 0 in L2(ν),

δφ[g; a] = 2
∫

gadν,

which is a continuous linear functional in a. To show that φ is
strictly convex we show that φ is strongly positive. When the
second variation δ2φ and the third variation δ3φ exist, they
are described by

4φ[f ; a] = δφ[f ; a] +
1
2
δ2φ[f ; a, a]

+ ε[f, a] ‖a‖2Lp(ν) (3)

= δφ[f ; a] +
1
2
δ2φ[f ; a, a]

+
1
6
δ3φ[f ; a, a, a]

+ ε[f, a] ‖a‖3Lp(ν) ,

where ε[f, a] → 0 as ‖a‖Lp(ν) → 0. The quadratic func-
tional δ2φ[f ; a, a] defined on normed linear space Lp(ν) is
strongly positive if there exists a constant k > 0 such that
δ2φ[f ; a, a] ≥ k ‖a‖2Lp(ν) for all a ∈ L2(ν). By definition of
the second Fréchet derivative,

δ2φ[g; b, a] = δφ[g + b; a]− δφ[g; a]

= 2
∫

(g + b)adν − 2
∫

gadν

= 2
∫

badν.

Thus δ2φ[g; b, a] is a quadratic form, where δ2φ is actually
independent of g and strongly positive since

δ2φ[g; a, a] = 2
∫

a2dν = 2‖a‖2L2(ν)

for all a ∈ L2(ν), which implies that φ is strictly convex and

dφ[f, g] =
∫

f2dν −
∫

g2dν − 2
∫

g(f − g)dν

=
∫

(f − g)2dν

= ‖f − g‖2L2(ν).

2) Squared Bias: Under definition (2), squared bias is a
Bregman divergence, this we have not previously seen noted
in the literature despite the importance of minimizing bias in
estimation [21].

Let φ[g] =
(∫

gdν
)2, where φ : L1(ν) → R. In this case

φ[g + a]− φ[g] =
(∫

gdν +
∫

adν

)2

−
(∫

gdν

)2

= 2
∫

gdν

∫
adν +

(∫
adν

)2

. (4)

Note that 2
∫

gdν
∫

adν is a continuous linear functional on
L1(ν) and

(∫
adν

)2 ≤ ‖a‖2L1(ν), so that

0 ≤
(∫

adν
)2

‖a‖L1(ν)
≤
‖a‖2L1(ν)

‖a‖L1(ν)
= ‖a‖L1(ν).

Thus from (4) and the definition of the Fréchet derivative,

δφ[g; a] = 2
∫

gdν

∫
adν.

By the definition of the second Fréchet derivative,

δ2φ[g; b, a] = δφ[g + b; a]− δφ[g; a]

= 2
∫

(g + b)dν

∫
adν − 2

∫
gdν

∫
adν

= 2
∫

bdν

∫
adν

is another quadratic form, and δ2φ is independent of g.
Then δ2φ[g; a, a] is strongly positive because,

δ2φ[g; a, a] = 2
(∫

adν

)2

= 2‖a‖2L1(ν) ≥ 0

for a ∈ L1(ν), and thus φ is in fact strictly convex. The
Bregman divergence is thus

dφ[f, g]

=
(∫

fdν

)2

−
(∫

gdν

)2

− 2
∫

gdν

∫
(f − g)dν

=
(∫

fdν

)2

+
(∫

gdν

)2

− 2
∫

gdν

∫
fdν

=
(∫

(f − g)dν

)2

≤ ‖f − g‖2L1(ν).
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3) Relative Entropy of Simple Functions: Denote by S the
collection of all integrable simple functions on the measure
space (Rd, Ω, ν), that is, the set of functions which can be
written as a finite linear combination of indicator functions
such that if g ∈ S , g can be expressed,

g(x) =
t∑

i=0

αiITi
; α0 = 0,

where ITi is the indicator function of the set Ti, {Ti}t
i=1 is

a collection of mutually disjoint sets of finite measure and
T0 = Rd \⋃t

i=1 Ti. We adopt the convention that T0 is the set
on which g is zero and therefore αi 6= 0 if i 6= 0.

Consider the normed vector space (S,‖ · ‖L∞(ν)) and let
W be the subset (not necessarily a vector subspace) of non-
negative functions in this normed space:

W = {g ∈ S subject to g ≥ 0}.
If g ∈ W then

∫

Rd

g ln gdν =
t∑

i=1

∫

Ti

αi ln αidν =
t∑

i=1

αi ln αiν(Ti), (5)

since 0 ln 0 = 0. Define the functional φ on W ,

φ[g] =
∫

Rd

g ln g dν, g ∈ W. (6)

The functional φ is not Fréchet-differentiable at g because in
general it cannot be guaranteed that g + h is non-negative on
the set where g = 0 for all perturbing functions h in the
underlying normed vector space

(S, ‖ · ‖L∞(ν)

)
with norm

smaller than any prescribed ε > 0. However, a generalized
Gâteaux derivative can be defined if we limit the perturbing
function h to a vector subspace. To that end, let G be the
subspace of

(S, ‖ · ‖L∞(ν)

)
defined by

G = {f ∈ S subject to f dν ¿ g dν}.
It is straightforward to show that G is a vector space. We define
the generalized Gâteaux derivative of φ at g ∈ W to be the
linear operator δGφ[g; ·] if

lim
‖h‖L∞(ν)→0

h∈G

|φ[g + h]− φ[g]− δGφ[g; h]|
‖h‖L∞(ν)

= 0. (7)

Note, that δGφ[g; ·] is not linear in general, but it is on the
vector space G. In general, if G is the entire underlying vector
space then (7) is the Fréchet derivative, and if G is the span
of only one element from the underlying vector space then
(7) is the Gâteaux derivative. Here, we have generalized the
Gâteaux derivative for the present case that G is a subspace
of the underlying vector space.

It remains to be shown that given the functional (6), the
derivative (7) exists and yields a Bregman divergence corre-
sponding to the usual notion of relative entropy. Consider the
possible solution

δGφ[g; h] =
∫

Rd

(1 + ln g)hdν, (8)

which coupled with (6) does yield relative entropy. It remains
to be shown only that (8) satisfies (7). Note that

φ[g + h]− φ[g]− δGφ[g; h] =
∫

Rd

(h + g) ln
h + g

g
− hdν

=
∫

E

(h + g) ln
h + g

g
− hdν,

(9)

where E is the set on which g is not zero.

Because g ∈ W , there are m,M > 0 such that m ≤ g ≤ M
on E. Let h ∈ G be such that ‖h‖L∞(ν) ≤ m, then g +h ≥ 0.
Our goal is to show that the expression

φ[g + h]− φ[g]− δGφ[g;h]
‖h‖L∞(ν)

(10)

is non-negative and that it is bounded above by a bound
that goes to 0 as ‖h‖L∞(ν) → 0. We start by bounding the
integrand from above using the inequality ln x ≤ x− 1:

(h + g) ln
h + g

g
− h ≤ (h + g)

h

g
− h =

h2

g
.

Then since h2/g ≤ (‖h‖L∞(ν))2/m,

φ[g + h]− φ[g]− δGφ[g; h]
‖h‖L∞(ν)

≤ 1
‖h‖L∞(ν)

∫

E

h2

g
dν

≤ ν(E)
m

‖h‖L∞(ν).

Since g is integrable ν(E) < ∞ and the right hand side goes
to 0 as ‖h‖L∞(ν) → 0.

Next, in order to show that (10) is non-negative we have
to prove that the integral (9) is not negative. To do so, we
normalize the measure and apply Jensen’s inequality. Take the
first term of the integrand of (9),

∫

E

(h + g) ln
h + g

g
dν

=
∫

E

h + g

g

(
ln

h + g

g

)
gdν,

= ‖g‖L1(ν)

∫

E

h + g

g
ln

h + g

g

g

‖g‖L1(ν)
dν

= ‖g‖L1(ν)

∫

E

λ

(
h + g

g

)
dν̃,

where the normalized measure dν̃ = g
‖g‖L1(ν)

dν is a probabil-
ity measure and λ(x) = x ln x is a convex function on (0,∞).
By Jensen’s inequality and then changing the measure back to
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dν,

‖g‖L1(ν)

∫

E

λ

(
h + g

g

)
dν̃

≥ ‖g‖L1(ν)λ

(∫

E

h + g

g
dν̃

)

= ‖g‖L1(ν)λ

(‖g + h‖L1(ν)

‖g‖L1(ν)

)

= ‖g + h‖L1(ν) ln
(‖g + h‖L1(ν)

‖g‖L1(ν)

)

≥ ‖g + h‖L1(ν)

(
1− ‖g‖L1(ν)

‖g + h‖L1(ν)

)

= ‖g + h‖L1(ν) − ‖g‖L1(ν) =
∫

E

hdν,

where we used the fact that ln 1
x ≥ 1 − x for all x > 0. By

combining these two latest results we find that
∫

E

(h + g) ln
h + g

g
dν ≥

∫

E

hdν,

so equivalently (9) is always non-negative. This fact also
confirms that the resulting relative entropy dφ[f, g] is always
non-negative, because (9) is dφ[f, g] if one sets h = f − g.

Lastly, one must show that the functional defined in (6) is
strictly convex. Again we will show this by showing that the
second variation of φ[g] is strongly positive. Let f ∈ G and
‖f‖L∞(ν) ≤ m. Using the Taylor expansion of ln one can
express,

δGφ[g + f ;h]− δGφ[g;h] =
∫

E

h ln
(

1 +
f

g

)
dν

=
∫

E

h
f

g
dν + ε[f, g]‖f‖L∞(ν),

where ε[f, g] goes to 0 as ‖f‖L∞(ν) → 0 because

‖ε[f, g]‖L∞(ν) ≤
ν(E)‖h‖L∞(ν)

2M2
‖f‖L∞(ν).

Therefore
δ2
Gφ[g; h, f ] =

∫

E

h
f

g
dν,

and

δ2
Gφ[g; h, h] =

∫

E

h2

g
dν

≥ 1
M
‖h‖L1(ν).

Thus δ2
Gφ[g;h, h] is strongly positive.

B. Relationship to Other Bregman Divergence Definitions

Two propositions establish the relationship of the functional
Bregman divergence to other Bregman divergence definitions.

Proposition I.2 (Functional Bregman Divergence Generalizes
Vector Bregman Divergence). The functional definition (2) is
a generalization of the standard vector Bregman divergence

dφ̃(x, y) = φ̃(x)− φ̃(y)−∇φ̃(y)T (x− y), (11)

where x, y ∈ Rn, and φ̃ : Rn → R is strictly convex and twice
differentiable.

Jones and Byrne describe a general class of divergences
between functions using a pointwise formulation [7]. Csiszár
specialized the pointwise formulation to a class of divergences
he termed Bregman distances Bs,ν [17], where given a σ-
finite measure space (X, Ω, ν), and non-negative measurable
functions f(x) and g(x), Bs,ν(f, g) equals

∫
s(f(x))− s(g(x))− s′(g(x))(f(x)− g(x))dν(x). (12)

The function s : (0,∞) → R is constrained to be dif-
ferentiable and strictly convex, and the limit limx→0 s(x)
and limx→0 s′(x) must exist, but not necessarily be finite.
The function s plays a role similar to the function φ in the
functional Bregman divergence; however, s acts on the range
of the functions f, g, whereas φ acts on the functions f, g.

Proposition I.3 (Functional Definition Generalizes Pointwise
Definition). Given a pointwise Bregman divergence as per
(12), an equivalent functional Bregman divergence can be
defined as per (2) if the measure ν is finite. However, given
a functional Bregman divergence dφ[f, g], there is not neces-
sarily an equivalent pointwise Bregman divergence.

C. Properties of the Functional Bregman Divergence

The Bregman divergence for random variables has some
well-known properties, as reviewed in [11, Appendix A].
Here, we note that the same properties hold for the functional
Bregman divergence (2). We give complete proofs in [18].

1. Non-negativity: The functional Bregman divergence is
non-negative: dφ[f, g] ≥ 0 for all admissible inputs.

2. Convexity: The Bregman divergence dφ[f, g] is always
convex with respect to f .

3. Linearity: The functional Bregman divergence is linear
such that,

d(c1φ1+c2φ2)[f, g] = c1dφ1 [f, g] + c2dφ2 [f, g].

4. Equivalence Classes: Partition the set of strictly convex,
differentiable functionals {φ} into classes such that φ1 and
φ2 belong to the same class if dφ1 [f, g] = dφ2 [f, g] for
all f, g ∈ A. For brevity we will denote dφ1 [f, g] simply
by dφ1 . Let φ1 ∼ φ2 denote that φ1 and φ2 belong to the
same class, then ∼ is an equivalence relation in that is
satisfies the properties of reflexivity (dφ1 = dφ1), symmetry
(if dφ1 = dφ2 , then dφ2 = dφ1 ), and transitivity (if dφ1 = dφ2

and dφ2 = dφ3 , then dφ1 = dφ3). Further, if φ1 ∼ φ2, then
they differ only by an affine transformation.

5. Linear Separation: The locus of admissible functions
f ∈ Lp(ν) that are equidistant from two fixed functions
g1, g2 ∈ Lp(ν) in terms of functional Bregman divergence
form a hyperplane.
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6. Dual Divergence: Given a pair (g, φ) where g ∈ Lp(ν) and
φ is a strictly convex twice-continuously Fréchet-differentiable
functional, then the function-functional pair (G,ψ) is the
Legendre transform of (g, φ) [19], if

φ[g] = −ψ[G] +
∫

g(x)G(x)dν(x), (13)

δφ[g; a] =
∫

G(x)a(x)dν(x), (14)

where ψ is a strictly convex twice-continuously Fréchet-
differentiable functional, and G ∈ Lq(ν), where 1

p + 1
q = 1.

Given Legendre transformation pairs f, g ∈ Lp(ν) and
F, G ∈ Lq(ν),

dφ[f, g] = dψ[G,F ].

7. Generalized Pythagorean Inequality: For any admissible
f, g, h ∈ Lp(ν),

dφ[f, h] = dφ[f, g] + dφ[g, h] + δφ[g; f − g]− δφ[h; f − g].

II. MINIMUM EXPECTED BREGMAN DIVERGENCE

Consider two sets of functions (or distributions), M and
A. Let F ∈ M be a random function with realization f .
Suppose there exists a probability distribution PF over the
set M, such that PF (f) is the probability of f ∈ M.
For example, consider the set of Gaussian distributions, and
given samples drawn independently and identically from a
randomly selected Gaussian distribution N , the data imply
a posterior probability PN (N ) for each possible generating
realization of a Gaussian distribution N . The goal is to find
the function g∗ ∈ A that minimizes the expected Bregman
divergence between the random function F and any function
g ∈ A. The following theorem shows that if the set of possible
minimizers A includes EPF

[F ], then g∗ = EPF
[F ] minimizes

the expectation of any Bregman divergence. Note the theorem
requires slightly stronger conditions on φ than the definition
of the Bregman divergence (2) requires.

Theorem II.1 (Minimizer of the Expected Bregman Di-
vergence). Let δ2φ[f ; a, a] be strongly positive and let
φ ∈ C3(L1(ν);R) be a three-times continuously Fréchet-
differentiable functional on L1(ν). Let M be a set of functions
that lie on a manifold M , and have associated measure
dM such that integration is well-defined. Suppose there is a
probability distribution PF defined over the set M. Let A be
a set of functions that includes EPF

[F ] if it exists. Suppose
the function g∗ minimizes the expected Bregman divergence
between the random function F and any function g ∈ A such
that

g∗ = arg inf
g∈A

EPF
[dφ(F, g)].

Then, if g∗ exists, it is given by

g∗ = EPF [F ]. (15)

A. Bayesian Estimation

Theorem II.1 can be applied to a set of distributions to
find the Bayesian estimate of a distribution given a posterior
or likelihood. For parametric distributions parameterized by
θ ∈ Rn, a probability measure Λ(θ), and some risk function
R(θ, ψ), ψ ∈ Rn, the Bayes estimator is defined [22] as

θ̂ = arg inf
ψ∈Rn

∫
R(θ, ψ)dΛ(θ). (16)

That is, the Bayes estimator minimizes some expected risk in
terms of the parameters. It follows from recent results [16]
that θ̂ = E[Θ] if the risk R is a Bregman divergence, where
Θ is the random variable whose realization is θ; this property
has been previously noted [8], [10].

The principle of Bayesian estimation can be applied to the
distributions themselves rather than to the parameters:

ĝ = arg inf
g∈A

∫

M

R(f, g)PF (f)dM, (17)

where PF (f) is a probability measure on the distributions f ∈
M, dM is a measure for the manifold M , and A is either
the space of all distributions or a subset of the space of all
distributions, such as the set M. When the set A includes
the distribution EPF

[F ] and the risk function R in (17) is a
functional Bregman divergence, then Theorem II.1 establishes
that ĝ = EPF

[F ].
For example, in recent work, two of the authors derived the

mean class posterior distribution for each class for a Bayesian
quadratic discriminant analysis classifier, and showed that
the classification results were superior to parameter-based
Bayesian quadratic discriminant analysis [23].

Of particular interest for estimation problems are the Breg-
man divergence examples given in Section I-A: total squared
difference (mean squared error) is a popular risk function in
regression [21]; minimizing relative entropy leads to useful
theorems for large deviations and other statistical subfields
[24]; and analyzing bias is a common approach to character-
izing and understanding statistical learning algorithms [21].

B. Case Study: Estimating a Scaled Uniform Distribution

As an illustration of the theorem, we present and compare
different estimates of a scaled uniform distribution given
independent and identically drawn samples. Let the set of
uniform distributions over [0, θ] for θ ∈ R+ be denoted
by U . Given independent and identically distributed samples
X1, X2, . . . , Xn drawn from an unknown uniform distribution
f ∈ U , the generating distribution is to be estimated. The risk
function R is taken to be squared error or total squared error
depending on context.

1) Bayesian Parameter Estimate: Depending on the choice
of the probability measure Λ(θ), the integral (16) may not be
finite; for example, using the likelihood of θ with Lebesgue
measure the integral is not finite. A standard solution is to use
a gamma prior on θ and Lebesgue measure. Let Θ be a random
parameter with realization θ, let the gamma distribution have
parameters t1 and t2, and denote the maximum of the data as
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Xmax = max{X1, X2, . . . , Xn}. Then a Bayesian estimate is
formulated [22, p. 240, 285]:

E[Θ|{X1, X2, . . . , Xn}, t1, t2]

=

∫∞
Xmax

θ 1
θn+t1+1 e

−1
θt2 dθ

∫∞
Xmax

1
θn+t1+1 e

−1
θt2 dθ

. (18)

The integrals can be expressed in terms of the chi-squared
random variable I2

v with v degrees of freedom:

E[Θ|{X1, X2, . . . , Xn}, t1, t2] =

1
t2(n + t1 − a)

P (χ2
2(n+t1−1) < 2

t2Xmax
)

P (χ2
2(n+t1)

< 2
t2Xmax

)
. (19)

Note that (16) presupposes that the best solution is also a
uniform distribution.

2) Bayesian Uniform Distribution Estimate: If one restricts
the minimizer of (17) to be a uniform distribution, then (17) is
solved with A = U . Because the set of uniform distributions
does not generally include its mean, Theorem II.1 does not ap-
ply, and thus different Bregman divergences may give different
minimizers for (17). Let PF be the likelihood of the data (no
prior is assumed over the set U), and use the Fisher information
metric ( [25]–[27]) for dM . Then the solution to (17) is
the uniform distribution on [0, 21/nXmax]. Using Lebesgue
measure instead gives a similar result: [0, 21/(n+1/2)Xmax].
We were unable to find these estimates in the literature, and
so their derivations are presented in the appendix.

3) Unrestricted Bayesian Distribution Estimate: When the
only restriction placed on the minimizer g in (17) is that g
be a distribution, then one can apply Theorem II.1 and solve
directly for the expected distribution EPF

[F ]. Let PF be the
likelihood of the data (no prior is assumed over the set U),
and use the Fisher information metric for dM . Solving (15),
noting that the uniform probability of x is f(x) = 1/a if
x ≤ a and zero otherwise, and the likelihood of the n drawn
points is (1/Xmax)n if a ≥ Xmax and zero otherwise,

g∗(x) =

∫∞
max(x,Xmax)

(
1
a

) (
1

an

) (
da
a

)
∫∞

Xmax

1
an

da
a

=
n (Xmax)

n

(n + 1)[max(x, Xmax)]n+1
. (20)

III. FURTHER DISCUSSION AND OPEN QUESTIONS

We have defined a general Bregman divergence for functions
and distributions that can provide a foundation for results in
statistics, information theory and signal processing. Theorem
II.1 is important for these fields because it ties Bregman
divergences to expectation. As shown in Section II-A, The-
orem II.1 can be directly applied to distributions to show
that Bayesian distribution estimation simplifies to expectation
when the risk function is a Bregman divergence and the
minimizing distribution is unrestricted.

It is common in Bayesian estimation to interpret the prior
as representing some actual prior knowledge, but in fact prior
knowledge often is not available or is difficult to quantify.
Another approach is to use a prior to capture coarse informa-
tion from the data that may be used to stabilize the estimation

[9], [23]. In practice, priors are sometimes chosen in Bayesian
estimation to tame the tail of likelihood distributions so that
expectations will exist when they might otherwise be infinite
[22]. This mathematically convenient use of priors adds esti-
mation bias that may be unwarranted by prior knowledge. An
alternative to mathematically convenient priors is to formulate
the estimation problem as a minimization of an expected
Bregman divergence between the unknown distribution and
the estimated distribution, and restrict the set of distributions
that can be the minimizer to be a set for which the Bayesian
integral exist. Open questions are how such restrictions trade-
off bias for reduced variance, and how to find or define an
“optimal” restricted set of distributions for this estimation
approach.

Finally, there are some results for the standard vector
Bregman divergence that have not been extended here. It has
been shown that a standard vector Bregman divergence must
be the risk function in order for the mean to be the minimizer
of an expected risk [16, Theorems 3 and 4]. The proof of that
result relies heavily on the discrete nature of the underlying
vectors, and it remains an open question as to whether a similar
result holds for the functional Bregman divergence. Another
result that has been shown for the vector case but remains
an open question in the functional case is convergence in
probability [16, Theorem 2].
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APPENDIX: PROOFS

A. Proof of Proposition I.2

We give a constructive proof that there is a corresponding
functional Bregman divergence dφ[f, g] for a specific choice of
φ : L1(ν) → R, where ν =

∑n
i=1 δci and f, g ∈ L1(ν). Here,

δx denotes the Dirac measure such that all mass is concentrated
at x, and {c1, c2, . . . , cn} is a collection of n distinct points
in Rd.

For any x ∈ Rn, define φ[f ] = φ̃(x1, x2, . . . , xn), where
f(c1) = x1, f(c2) = x2, . . . , f(cn) = xn. Then the difference
is

∆φ[f ; a] = φ[f + a]− φ[f ]
= φ̃ ((f + a)(c1), . . . , (f + a)(cn))− φ̃ (x1, . . . , xn)
= φ̃ (x1 + a(c1), . . . , xn + a(cn))− φ̃ (x1, . . . , xn) .

Let ai be short hand for a(ci), and use the Taylor expansion
for functions of several variables to yield

∆φ[f ; a] = ∇φ̃(x1, . . . , xn)T (a1, . . . , an) + ε[f, a]‖a‖L1 .

Therefore,

δφ[f ; a] = ∇φ̃(x1, . . . , xn)T (a1, . . . , an) = ∇φ̃(x)T a,
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where x = (x1, x2, . . . , xn) and a = (a1, . . . , an). Thus, from
(3), the functional Bregman divergence definition (2) for φ is
equivalent to the standard vector Bregman divergence:

dφ̃[f, g] = φ[f ]− φ[g]− δφ[g; f − g]

= φ̃(x)− φ̃(y)−∇φ̃(y)T (x− y). (21)

B. Proof of Proposition I.3

First, we give a constructive proof of the first part of
the proposition by showing that given a Bs,ν , there is an
equivalent functional divergence dφ. Then, the second part
of the proposition is shown by example: we prove that the
squared bias functional Bregman divergence given in Section
I-A.2 is a functional Bregman divergence that cannot be
defined as a pointwise Bregman divergence.

Note that the integral to calculate Bs,ν is not always finite.
To ensure finite Bs,ν , we explicitly constrain limx→0 s′(x)
and limx→0 s(x) to be finite. From the assumption that s
is strictly convex, s must be continuous on (0,∞). Recall
from the assumptions that the measure ν is finite, and that the
function s is differentiable on (0,∞).

Given a Bs,ν , define the continuously differentiable function

s̃(x) =

{
s(x) x ≥ 0
−s(−x) + 2s(0) x < 0.

Specify φ : L∞(ν) → R as

φ[f ] =
∫

X

s̃(f(x))dν.

Note that if f ≥ 0,

φ[f ] =
∫

X

s(f(x))dν.

Because s̃ is continuous on R, s̃(f) ∈ L∞(ν) whenever f ∈
L∞(ν), so the above integrals always make sense.

It remains to be shown that δφ[f ; ·] completes the equiva-
lence when f ≥ 0. For h ∈ L∞(ν),

φ[f + h]− φ[f ] =
∫

X

s̃(f(x) + h(x))dν −
∫

X

s(f(x))dν

=
∫

X

s̃(f(x) + h(x))− s(f(x))dν

=
∫

X

s̃′(f(x))h(x) + ε (f(x), h(x)) h(x)dν

=
∫

X

s′(f(x))h(x) + ε (f(x), h(x)) h(x)dν,

where we used the fact that

s̃(f(x) + h(x))
= s̃(f(x)) + (s̃′(f(x)) + ε(f(x), h(x))) h(x)
= s(f(x)) + (s′(f(x)) + ε(f(x), h(x))) h(x),

because f ≥ 0. On the other hand, if h(x) = 0 then
ε(f(x), h(x)) = 0, and if h(x) 6= 0 then

|ε(f(x), h(x))| ≤
∣∣∣∣
s̃(f(x) + h(x))− s̃(f(x))

h(x)

∣∣∣∣ + |s′(f(x))| .

Suppose {hn} ⊂ L∞(ν) such that hn → 0. Then there is
a measurable set E such that its complement is of measure 0
and hn → 0 uniformly on E. There is some N > 0 such that
for any n > N , |hn(x)| ≤ ε for all x ∈ E. Without loss of
generality, assume that there is some M > 0 such that for all
x ∈ E, |f(x)| ≤ M . Since s̃ is continuously differentiable,
there is a K > 0 such that max{s̃′(t) subject to t ∈ [−M −
ε,M + ε]} ≤ K, and by the mean value theorem

∣∣∣∣
s̃(f(x) + h(x))− s̃(f(x))

h(x)

∣∣∣∣ ≤ K,

for almost all x ∈ X . Then

|ε(f(x), h(x))| ≤ 2K,

except on a set of measure 0. The fact that h(x) → 0 almost
everywhere implies that |ε(f(x), h(x))| → 0 almost every-
where, and by Lebesgue’s dominated convergence theorem,
the corresponding integral goes to 0. As a result, the Fréchet
derivative of φ is

δφ[f ;h] =
∫

X

s′(f(x))h(x)dν. (22)

Thus the functional Bregman divergence is equivalent to the
given pointwise Bs,ν .

We additionally note that the assumptions that f ∈ L∞(ν)
and that the measure ν is finite are necessary for this proof.
Counterexamples can be constructed if f ∈ Lp or ν(X) = ∞
such that the Fréchet derivative of φ does not obey (22). This
concludes the first part of the proof.

To show that the squared bias functional Bregman diver-
gence given in Section I-A.2 is an example of a functional
Bregman divergence that cannot be defined as a pointwise
Bregman divergence we prove that the converse statement
leads to a contradiction.

Suppose (X, Σ, ν) and (X, Σ, µ) are measure spaces where
ν is a non-zero σ-finite measure and that there is a differen-
tiable function f : (0,∞) → R such that

(∫
ξdν

)2

=
∫

f(ξ)dµ, (23)

where ξ ∈ L1(ν). Let f(0) = limx→0 f(x), which can be
finite or infinite, and let α be any real number. Then

∫
f(αξ)dµ =

(∫
αξdν

)2

= α2

(∫
ξdν

)2

= α2

∫
f(ξ)dµ.

Because ν is σ-finite, there is a measurable set E such that
0 < |ν(E)| < ∞. Let X\E denote the complement of E in
X . Then

α2ν2(E) = α2

(∫
IEdν

)2

= α2

∫
f(IE)dµ

= α2

∫

X\E
f(0)dµ + α2

∫

E

f(1)dµ

= α2f(0)µ(X\E) + α2f(1)µ(E).
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Also,

α2ν2(E) =
(∫

αIEdν

)2

.

However,
(∫

αIEdν

)2

=
∫

f(αIE)dµ

=
∫

X\E
f(αIE)dµ +

∫

E

f(αIE)dµ

= f(0)µ(X\E) + f(α)µ(E);

so one can conclude that

α2f(0)µ(X\E) + α2f(1)µ(E)
= f(0)µ(X\E) + f(α)µ(E). (24)

Apply equation (23) for ξ = 0 to yield

0 =
(∫

0dν

)2

=
∫

f(0)dµ = f(0)µ(X).

Since |ν(E)| > 0, µ(X) 6= 0, so it must be that f(0) = 0,
and (24) becomes

α2ν2(E) = α2f(1)µ(E) = f(α)µ(E) ∀α ∈ R.

The first equation implies that µ(E) 6= 0. The second
equation determines the function f completely:

f(α) = f(1)α2.

Then (23) becomes
(∫

ξdν

)2

=
∫

f(1)ξ2dµ.

Consider any two disjoint measurable sets, E1 and E2, with
finite nonzero measure. Define ξ1 = IE1 and ξ2 = IE2 . Then
ξ = ξ1 + ξ2 and ξ1ξ2 = IE1IE2 = 0. Equation (23) becomes

∫
ξ1dν

∫
ξ2dν = f(1)

∫
ξ1ξ2dµ. (25)

This implies the following contradiction:
∫

ξ1dν

∫
ξ2dν = ν(E1)ν(E2) 6= 0, (26)

but
f(1)

∫
ξ1ξ2dµ = 0. (27)

C. Proof of Theorem II.1

Recall that for a functional J to have an extremum (mini-
mum) at f = f̂ , it is necessary that

δJ [f ; a] = 0 and δ2J [f ; a, a] ≥ 0,

for f = f̂ and for all admissible functions a ∈ A. A sufficient
condition for a functional J [f ] to have a minimum for f = f̂
is that the first variation δJ [f ; a] must vanish for f = f̂ , and
its second variation δ2J [f ; a, a] must be strongly positive for
f = f̂ .

Let

J [g] = EPF
[dφ(F, g)] =

∫

M

dφ[f, g]PF (f)dM

=
∫

M

(φ[f ]− φ[g]− δφ[g; f − g])PF (f)dM,(28)

where (28) follows by substituting the definition of Bregman
divergence (2). Consider the increment

∆J [g; a] = J [g + a]− J [g] (29)

= −
∫

M

(φ[g + a]− φ[g]) PF (f)dM

−
∫

M

(δφ[g + a; f − g − a]

−δφ[g; f − g]) PF (f)dM, (30)

where (30) follows from substituting (28) into (29). Using the
definition of the differential of a functional given in (1), the
first integrand in (30) can be written as

φ[g + a]− φ[g] = δφ[g; a] + ε[g, a] ‖a‖L1(ν) . (31)

Take the second integrand of (30), and subtract and add
δφ[g; f − g − a],

δφ[g + a; f − g − a]− δφ[g; f − g]
= δφ[g + a; f − g − a]− δφ[g; f − g − a]

+ δφ[g; f − g − a]− δφ[g; f − g]
(a)
= δ2φ[g; f − g − a, a] + ε[g, a] ‖a‖L1(ν) + δφ[g; f − g]

− δφ[g; a]− δφ[g; f − g]
(b)
= δ2φ[g; f − g, a]− δ2φ[g; a, a] + ε[g, a] ‖a‖L1(ν)

− δφ[g; a] (32)

where (a) follows from the linearity of the third term, and (b)
follows from the linearity of the first term. Substitute (31) and
(32) into (30),

4J [g; a] = −
∫

M

(
δ2φ[g; f − g, a]− δ2φ[g; a, a]

+ ε[g, a] ‖a‖L1(ν)

)
PF (f)dM.

Note that the term δ2φ[g; a, a] is of order ‖a‖2L1(ν), that
is,

∥∥δ2φ[g; a, a]
∥∥

L1(ν)
≤ m ‖a‖2L1(ν) for some constant m.

Therefore,

lim
‖a‖L1(ν)→0

‖J [g + a]− J [g]− δJ [g; a]‖L1(ν)

‖a‖L1(ν)

= 0,

where,

δJ [g; a] = −
∫

M

δ2φ[g; f − g, a]PF (f)dM. (33)

For fixed a, δ2φ[g; ·, a] is a bounded linear functional in the
second argument, so the integration and the functional can be
interchanged in (33), which becomes

δJ [g; a] = −δ2φ

[
g;

∫

M

(f − g)PF (f)dM, a

]
.
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Using the functional optimality conditions, J [g] has an ex-
tremum for g = ĝ if

δ2φ

[
ĝ;

∫

M

(f − ĝ)PF (f)dM, a

]
= 0. (34)

Set a =
∫

M
(f − ĝ)P (f)dM in (34) and use the assumption

that the quadratic functional δ2φ[g; a, a] is strongly positive,
which implies that the above functional can be zero if and
only if a = 0, that is,

0 =
∫

M

(f − ĝ)PF (f)dM, (35)

ĝ = EPF
[F ], (36)

where the last line holds if the expectation exists (i.e. if the
measure is well-defined and the expectation is finite). Because
a Bregman divergence is not necessarily convex in its second
argument, it is not yet established that the above unique
extremum is a minimum. To see that (36) is in fact a minimum
of J [g], from the functional optimality conditions it is enough
to show that δ2J [ĝ; a, a] is strongly positive. To show this, for
b ∈ L1(ν), consider

δJ [g + b; a]− δJ [g; a]
(c)
= −

∫

M

(
δ2φ[g + b; f − g − b, a]

− δ2φ[g; f − g, a]
)
PF (f)dM

(d)
= −

∫

M

(
δ2φ[g + b; f − g − b, a]− δ2φ[g; f − g − b, a]

+ δ2φ[g; f − g − b, a]− δ2φ[g; f − g, a]
)
PF (f)dM

(e)
= −

∫

M

(
δ3φ[g; f − g − b, a, b] + ε[g, a, b] ‖b‖L1(ν)

+ δ2φ[g; f − g, a]− δ2φ[g; b, a]
− δ2φ[g; f − g, a]

)
PF (f)dM

(f)
= −

∫

M

(
δ3φ[g; f − g, a, b]− δ3φ[g; b, a, b]

+ ε[g, a, b] ‖b‖L1(ν) − δ2φ[g; b, a]
)
PF (f)dM, (37)

where (c) follows from using integral (33); (d) from subtract-
ing and adding δ2φ[g; f − g− b, a]; (e) from the fact that the
variation of the second variation of φ is the third variation
of φ [28]; and (f) from the linearity of the first term and
cancellation of the third and fifth terms. Note that in (37) for
fixed a, the term δ3φ[g; b, a, b] is of order ‖b‖2L1(ν), while the
first and the last terms are of order ‖b‖L1(ν). Therefore,

lim
‖b‖L1(ν)→0

∥∥δJ [g + b; a]− δJ [g; a]− δ2J [g; a, b]
∥∥

L1(ν)

‖b‖L1(ν)

= 0,

where

δ2J [g; a, b] = −
∫

M

δ3φ[g; f − g, a, b]PF (f)dM

+
∫

M

δ2φ[g; a, b]PF (f)dM. (38)

Substitute b = a, g = ĝ and interchange integration and the

continuous functional δ3φ in the first integral of (38), then

δ2J [ĝ; a, a] = −δ3φ

[
ĝ;

∫

M

(f − ĝ)PF (f)dM, a, a

]

+
∫

M

δ2φ[ĝ; a, a]PF (f)dM

=
∫

M

δ2φ[ĝ; a, a]PF (f)dM (39)

≥
∫

M

k ‖a‖2L1(ν) PF (f)dM

= k ‖a‖2L1(ν) > 0, (40)

where (39) follows from (35), and (40) follows from the
strong positivity of δ2φ[ĝ; a, a]. Therefore, from (40) and the
functional optimality conditions, ĝ is the minimum.

D. Derivation of the Bayesian Distribution-based Uniform
Estimate Restricted to a Uniform Minimizer

Let f(x) = 1/a for all 0 ≤ x ≤ a and g(x) = 1/b for all
0 ≤ x ≤ b. Assume at first that b > a; then the total squared
difference between f and g is

∫

x

(f(x)− g(x))2dx = a

(
1
a
− 1

b

)2

+ (b− a)
(

1
b

)2

=
b− a

ab

=
|b− a|

ab
,

where the last line does not require the assumption that b > a.
In this case, the integral (17) is over the one-dimensional

manifold of uniform distributions U ; a Riemannian metric can
be formed by using the differential arc element to convert
Lebesgue measure on the set U to a measure on the set of
parameters a such that (17) is re-formulated in terms of the
parameters for ease of calculation:

b∗ = arg min
b∈R+

∫ ∞

a=Xmax

|b− a|
ab

1
an

∥∥∥∥
df

da

∥∥∥∥
2

da, (41)

where 1/an is the likelihood of the n data points being
drawn from a uniform distribution [0, a], and the estimated
distribution is uniform on [0, b∗]. The differential arc element∥∥∥ df

da

∥∥∥
2

can be calculated by expanding df/da in terms of

the Haar orthonormal basis { 1√
a
, φjk(x)}, which forms a

complete orthonormal basis for the interval 0 ≤ x ≤ a, and
then the required norm is equivalent to the norm of the basis
coefficients of the orthonormal expansion:

∥∥∥∥
df

da

∥∥∥∥
2

=
1

a3/2
. (42)

For estimation problems, the measure determined by the
Fisher information metric may be more appropriate than
Lebesgue measure [25]–[27]. Then

dM = |I(a)| 12 da, (43)

where I is the Fisher information matrix. For the one-
dimensional manifold M formed by the set of scaled uniform
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distributions U , the Fisher information matrix is

I(a) = EX

[
−

(
d2 log 1

a

da2

)]

=
∫ a

0

1
a2

1
a
dx =

1
a2

,

so that the differential element is dM = da
a .

We solve (17) using the Lebesgue measure (42); the solution
with the Fisher differential element follows the same logic.
Then (41) is equivalent to

arg min
b

J(b) =
∫ ∞

a=Xmax

|b− a|
ab

1
an+3/2

da

=
∫ b

a=Xmax

b− a

ab

da

an+3/2
+

∫ ∞

b

a− b

ab

da

an+3/2

=
2

(n + 1/2)(n + 3/2)bn+3/2
− 1

b(n + 1
2 )Xn+ 1

2
max

+
1

(n + 3/2)Xn+3/2
max

.

The minimum is found by setting the first derivative to zero:

J ′(b̂) =
2

(n + 1/2)(n + 3/2)
(n + 3/2)

b̂n+5/2

+
1

b̂2(n + 1/2)Xn+1/2
max

= 0

⇒ b̂ = 2
1

n+1/2 Xmax.

To establish that b̂ is in fact a minimum, note that

J ′′(b̂) =
1

b̂X
n+1/2
max

=
1

2
3

n+1/6 X
n+7/2
max

> 0.

Thus, the restricted Bayesian estimate is the uniform distribu-
tion over [0, 2

1
n+1/2 Xmax].
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